Copied to
clipboard

G = C427Q8order 128 = 27

7th semidirect product of C42 and Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 2), monomial, rational

Aliases: C427Q8, C23.451C24, C22.2362+ 1+4, C22.1822- 1+4, C2.5Q82, C2.30D42, C4⋊C419Q8, C42(C4⋊Q8), C2.24(D4×Q8), C4⋊C4.234D4, C429C4.28C2, (C22×C4).840C23, (C2×C42).556C22, C22.302(C22×D4), C22.101(C22×Q8), (C22×Q8).134C22, C23.78C23.7C2, C23.65C23.53C2, C2.C42.188C22, C2.12(C23.41C23), (C4×C4⋊C4).64C2, C2.14(C2×C4⋊Q8), (C2×C4).77(C2×D4), (C2×C4⋊Q8).33C2, (C2×C4).51(C2×Q8), (C2×C4⋊C4).871C22, SmallGroup(128,1283)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C427Q8
C1C2C22C23C22×C4C2×C42C4×C4⋊C4 — C427Q8
C1C23 — C427Q8
C1C23 — C427Q8
C1C23 — C427Q8

Generators and relations for C427Q8
 G = < a,b,c,d | a4=b4=c4=1, d2=c2, ab=ba, cac-1=a-1b2, dad-1=ab2, bc=cb, dbd-1=b-1, dcd-1=c-1 >

Subgroups: 468 in 278 conjugacy classes, 140 normal (12 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C42, C42, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2.C42, C2×C42, C2×C42, C2×C4⋊C4, C4⋊Q8, C22×Q8, C4×C4⋊C4, C429C4, C23.65C23, C23.78C23, C2×C4⋊Q8, C427Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C24, C4⋊Q8, C22×D4, C22×Q8, 2+ 1+4, 2- 1+4, C2×C4⋊Q8, C23.41C23, D42, D4×Q8, Q82, C427Q8

Smallest permutation representation of C427Q8
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 15 44 50)(2 16 41 51)(3 13 42 52)(4 14 43 49)(5 36 37 127)(6 33 38 128)(7 34 39 125)(8 35 40 126)(9 22 17 46)(10 23 18 47)(11 24 19 48)(12 21 20 45)(25 57 54 30)(26 58 55 31)(27 59 56 32)(28 60 53 29)(61 65 72 100)(62 66 69 97)(63 67 70 98)(64 68 71 99)(73 80 111 114)(74 77 112 115)(75 78 109 116)(76 79 110 113)(81 101 108 88)(82 102 105 85)(83 103 106 86)(84 104 107 87)(89 117 124 96)(90 118 121 93)(91 119 122 94)(92 120 123 95)
(1 70 26 10)(2 62 27 17)(3 72 28 12)(4 64 25 19)(5 106 114 122)(6 82 115 90)(7 108 116 124)(8 84 113 92)(9 41 69 56)(11 43 71 54)(13 100 60 21)(14 68 57 48)(15 98 58 23)(16 66 59 46)(18 44 63 55)(20 42 61 53)(22 51 97 32)(24 49 99 30)(29 45 52 65)(31 47 50 67)(33 102 74 118)(34 88 75 96)(35 104 76 120)(36 86 73 94)(37 83 80 91)(38 105 77 121)(39 81 78 89)(40 107 79 123)(85 112 93 128)(87 110 95 126)(101 109 117 125)(103 111 119 127)
(1 119 26 103)(2 95 27 87)(3 117 28 101)(4 93 25 85)(5 67 114 47)(6 99 115 24)(7 65 116 45)(8 97 113 22)(9 35 69 76)(10 127 70 111)(11 33 71 74)(12 125 72 109)(13 89 60 81)(14 121 57 105)(15 91 58 83)(16 123 59 107)(17 126 62 110)(18 36 63 73)(19 128 64 112)(20 34 61 75)(21 39 100 78)(23 37 98 80)(29 108 52 124)(30 82 49 90)(31 106 50 122)(32 84 51 92)(38 68 77 48)(40 66 79 46)(41 120 56 104)(42 96 53 88)(43 118 54 102)(44 94 55 86)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,15,44,50)(2,16,41,51)(3,13,42,52)(4,14,43,49)(5,36,37,127)(6,33,38,128)(7,34,39,125)(8,35,40,126)(9,22,17,46)(10,23,18,47)(11,24,19,48)(12,21,20,45)(25,57,54,30)(26,58,55,31)(27,59,56,32)(28,60,53,29)(61,65,72,100)(62,66,69,97)(63,67,70,98)(64,68,71,99)(73,80,111,114)(74,77,112,115)(75,78,109,116)(76,79,110,113)(81,101,108,88)(82,102,105,85)(83,103,106,86)(84,104,107,87)(89,117,124,96)(90,118,121,93)(91,119,122,94)(92,120,123,95), (1,70,26,10)(2,62,27,17)(3,72,28,12)(4,64,25,19)(5,106,114,122)(6,82,115,90)(7,108,116,124)(8,84,113,92)(9,41,69,56)(11,43,71,54)(13,100,60,21)(14,68,57,48)(15,98,58,23)(16,66,59,46)(18,44,63,55)(20,42,61,53)(22,51,97,32)(24,49,99,30)(29,45,52,65)(31,47,50,67)(33,102,74,118)(34,88,75,96)(35,104,76,120)(36,86,73,94)(37,83,80,91)(38,105,77,121)(39,81,78,89)(40,107,79,123)(85,112,93,128)(87,110,95,126)(101,109,117,125)(103,111,119,127), (1,119,26,103)(2,95,27,87)(3,117,28,101)(4,93,25,85)(5,67,114,47)(6,99,115,24)(7,65,116,45)(8,97,113,22)(9,35,69,76)(10,127,70,111)(11,33,71,74)(12,125,72,109)(13,89,60,81)(14,121,57,105)(15,91,58,83)(16,123,59,107)(17,126,62,110)(18,36,63,73)(19,128,64,112)(20,34,61,75)(21,39,100,78)(23,37,98,80)(29,108,52,124)(30,82,49,90)(31,106,50,122)(32,84,51,92)(38,68,77,48)(40,66,79,46)(41,120,56,104)(42,96,53,88)(43,118,54,102)(44,94,55,86)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,15,44,50)(2,16,41,51)(3,13,42,52)(4,14,43,49)(5,36,37,127)(6,33,38,128)(7,34,39,125)(8,35,40,126)(9,22,17,46)(10,23,18,47)(11,24,19,48)(12,21,20,45)(25,57,54,30)(26,58,55,31)(27,59,56,32)(28,60,53,29)(61,65,72,100)(62,66,69,97)(63,67,70,98)(64,68,71,99)(73,80,111,114)(74,77,112,115)(75,78,109,116)(76,79,110,113)(81,101,108,88)(82,102,105,85)(83,103,106,86)(84,104,107,87)(89,117,124,96)(90,118,121,93)(91,119,122,94)(92,120,123,95), (1,70,26,10)(2,62,27,17)(3,72,28,12)(4,64,25,19)(5,106,114,122)(6,82,115,90)(7,108,116,124)(8,84,113,92)(9,41,69,56)(11,43,71,54)(13,100,60,21)(14,68,57,48)(15,98,58,23)(16,66,59,46)(18,44,63,55)(20,42,61,53)(22,51,97,32)(24,49,99,30)(29,45,52,65)(31,47,50,67)(33,102,74,118)(34,88,75,96)(35,104,76,120)(36,86,73,94)(37,83,80,91)(38,105,77,121)(39,81,78,89)(40,107,79,123)(85,112,93,128)(87,110,95,126)(101,109,117,125)(103,111,119,127), (1,119,26,103)(2,95,27,87)(3,117,28,101)(4,93,25,85)(5,67,114,47)(6,99,115,24)(7,65,116,45)(8,97,113,22)(9,35,69,76)(10,127,70,111)(11,33,71,74)(12,125,72,109)(13,89,60,81)(14,121,57,105)(15,91,58,83)(16,123,59,107)(17,126,62,110)(18,36,63,73)(19,128,64,112)(20,34,61,75)(21,39,100,78)(23,37,98,80)(29,108,52,124)(30,82,49,90)(31,106,50,122)(32,84,51,92)(38,68,77,48)(40,66,79,46)(41,120,56,104)(42,96,53,88)(43,118,54,102)(44,94,55,86) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,15,44,50),(2,16,41,51),(3,13,42,52),(4,14,43,49),(5,36,37,127),(6,33,38,128),(7,34,39,125),(8,35,40,126),(9,22,17,46),(10,23,18,47),(11,24,19,48),(12,21,20,45),(25,57,54,30),(26,58,55,31),(27,59,56,32),(28,60,53,29),(61,65,72,100),(62,66,69,97),(63,67,70,98),(64,68,71,99),(73,80,111,114),(74,77,112,115),(75,78,109,116),(76,79,110,113),(81,101,108,88),(82,102,105,85),(83,103,106,86),(84,104,107,87),(89,117,124,96),(90,118,121,93),(91,119,122,94),(92,120,123,95)], [(1,70,26,10),(2,62,27,17),(3,72,28,12),(4,64,25,19),(5,106,114,122),(6,82,115,90),(7,108,116,124),(8,84,113,92),(9,41,69,56),(11,43,71,54),(13,100,60,21),(14,68,57,48),(15,98,58,23),(16,66,59,46),(18,44,63,55),(20,42,61,53),(22,51,97,32),(24,49,99,30),(29,45,52,65),(31,47,50,67),(33,102,74,118),(34,88,75,96),(35,104,76,120),(36,86,73,94),(37,83,80,91),(38,105,77,121),(39,81,78,89),(40,107,79,123),(85,112,93,128),(87,110,95,126),(101,109,117,125),(103,111,119,127)], [(1,119,26,103),(2,95,27,87),(3,117,28,101),(4,93,25,85),(5,67,114,47),(6,99,115,24),(7,65,116,45),(8,97,113,22),(9,35,69,76),(10,127,70,111),(11,33,71,74),(12,125,72,109),(13,89,60,81),(14,121,57,105),(15,91,58,83),(16,123,59,107),(17,126,62,110),(18,36,63,73),(19,128,64,112),(20,34,61,75),(21,39,100,78),(23,37,98,80),(29,108,52,124),(30,82,49,90),(31,106,50,122),(32,84,51,92),(38,68,77,48),(40,66,79,46),(41,120,56,104),(42,96,53,88),(43,118,54,102),(44,94,55,86)]])

38 conjugacy classes

class 1 2A···2G4A···4H4I···4Z4AA4AB4AC4AD
order12···24···44···44444
size11···12···24···48888

38 irreducible representations

dim11111122244
type++++++-+-+-
imageC1C2C2C2C2C2Q8D4Q82+ 1+42- 1+4
kernelC427Q8C4×C4⋊C4C429C4C23.65C23C23.78C23C2×C4⋊Q8C42C4⋊C4C4⋊C4C22C22
# reps12144448811

Matrix representation of C427Q8 in GL6(𝔽5)

420000
410000
004400
002100
000002
000020
,
130000
140000
004400
002100
000010
000001
,
130000
140000
001000
000100
000001
000040
,
340000
020000
004000
002100
000003
000030

G:=sub<GL(6,GF(5))| [4,4,0,0,0,0,2,1,0,0,0,0,0,0,4,2,0,0,0,0,4,1,0,0,0,0,0,0,0,2,0,0,0,0,2,0],[1,1,0,0,0,0,3,4,0,0,0,0,0,0,4,2,0,0,0,0,4,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,1,0,0,0,0,3,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,1,0],[3,0,0,0,0,0,4,2,0,0,0,0,0,0,4,2,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,3,0] >;

C427Q8 in GAP, Magma, Sage, TeX

C_4^2\rtimes_7Q_8
% in TeX

G:=Group("C4^2:7Q8");
// GroupNames label

G:=SmallGroup(128,1283);
// by ID

G=gap.SmallGroup(128,1283);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,568,758,723,184,675,80]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=c^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a*b^2,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽